
2025/07/16 21:25 1/10 UFE 2.0 Netcode

Universal Fighting Engine - https://ufe3d.com/

UFE 2.0 Netcode

UFE Netcode is the second iteration of the network system for UFE. It allows the game to run online
matches in a smooth lag-free environment thanks to its native rollback mechanics and deterministic
physics. The netcode also uses raw manual tracking to its own core variables, optimizing CPU usage
(even mobiles).
The new network options also comes with its own client/server structure (powered by Photon
Network) allowing direct player connection without the use of IP.

PC | WebGL | Android

Hit Online to search for a match (US Server)
All builds are cross-platform

The new Rollback netcode is available on UFE 2 PRO and UFE 2 Source. For more information click
here.

How it works

UFE Netcode lets you use a combination of both Frame Delay and Rollback to achieve the best
possible result for your game, both in visual and gameplay. Learning how to tweak the values is
essential to determine your players experience.

What is Rollback?

Rollback (name might change depending on game or developer) is a technique in which a game is
able to return to a previous frame, change the outcome of an event (say, an input), and return to the
current frame, all in a span of a single frame of animation. This allows a game to catch up with
whatever concurrent event instead of waiting for both clients to sync up. When done right this can
create an experience nearly identical to local play.
The subject can be extensive and have been topic of several games for years (often referred as
GGPO). You can read more about it on this great article by @mauvecow:
http://mauve.mizuumi.net/2012/07/05/understanding-fighting-game-networking/

If Rollback is so good, why use Frame Delay at all?

Although most of us would prefer our games running at 0 frame delay, depending on your
configurations rollbacks can be heavy on the CPU, and a constant attempt to jump time can have
notable frame skips. Having a few frames of delay greatly optimize the situation, and thanks to the
option Apply Frame Delay Offline your users can get used to a certain delay before engaging
online opponents.
You can adjust the frame delay under the Frame Delay Options. The default value used for most cases
is 4, but it can be changed depending on your need for animation blending or device limitation.

http://www.ufe3d.com/demo/ufe2/pc/UFE2.zip
http://www.ufe3d.com/demo/ufe2/webgl/
http://www.ufe3d.com/demo/ufe2/android/UFE2.apk
https://assetstore.unity.com/packages/templates/systems/ufe-2-pro-125472
https://assetstore.unity.com/packages/templates/systems/ufe-2-source-126124
https://forum.unity.com/threads/universal-fighting-engine-2.541442/
https://forum.unity.com/threads/universal-fighting-engine-2.541442/
https://ufe3d.com/doku.php/global:network
https://en.wikipedia.org/wiki/GGPO
http://mauve.mizuumi.net/2012/07/05/understanding-fighting-game-networking/

Last update: 2022/11/15 16:09 global:netcode https://ufe3d.com/doku.php/global:netcode?rev=1668546572

https://ufe3d.com/ Printed on 2025/07/16 21:25

Converting to 2.0

UFE 2.0 was developed with backwards compatibility in mind. Several processes were created
specifically to deal with converting large amounts of data at once. A prototype of your project with the
new netcode can be created in less then an hour if you know what you are doing. The whole process
can be divided in 4 easy steps:

Step 1: Running UFE Auto Update

 One of the key changes made to the code is the use of Fixed Point (Fix64), a
format that replaces all uses of float throughout the code. If you are running UFE 1.x
and wish to update your files without having to redo them, use this system to update
all serialized Floats and Vectors to a new declaration.
To run the auto update, right click on one of your UFE files (Global , Character or Move)
from the project tab and select “UFE 2.0 → Update All Definitions”. This will automatically assign all
the new variables (including nested files).

Step 2: Record Character Maps (PRO/Source)

Now that we have our asset files converted to Fix64 we can move to the next step to ensure
synchronization: Map the character animations. This is a fairly simple process, but can be a bit time
consuming depending on how many characters you have or how often you change your animation
files.
First, open the scene Scenes\MapRecorder.unity and under the hierarchy click on the Main
Camera. Notice the script attached to it: Animation Recorder.

Drag one of your characters into the Character Info field and hit Play. If you have your hitbox setup
correctly you should see something like this:

https://ufe3d.com/doku.php/global:introduction
https://ufe3d.com/doku.php/character:introduction
https://ufe3d.com/doku.php/move:introduction
https://ufe3d.com/lib/exe/fetch.php/global:netcode_upgrade.jpg

2025/07/16 21:25 3/10 UFE 2.0 Netcode

Universal Fighting Engine - https://ufe3d.com/

Select the Move Set and click Record Basic Moves to start recording all animations listed under your
basic moves into Fix64 position maps. Once completed, do the same for Special Moves then hit Stop.
Replace the character info file with the next character and repeat the process.

Step 3: Update Character File

Next up is the HitBoxes' radius, rectangles and offsets. Because these values are recorded under the
prefab itself we need to do this from the Character Editor. Open the Character under Hit Box Setup
and hit “Restore Legacy Values”:

This will assign the Fix64 variables with their floats relatives inside each of the hitboxes. Now, just hit
Apply Changes and close the character.

Last update: 2022/11/15 16:09 global:netcode https://ufe3d.com/doku.php/global:netcode?rev=1668546572

https://ufe3d.com/ Printed on 2025/07/16 21:25

Remember: UFE 2.0 will start using the new Fix64 variables instead of floats, so pressing this button
again will make the editor reset the variables to the previous floats values.
Now, under the Moveset, toggle 'Use Animation Maps'. This will ensure the engine uses the maps
recorded on step 2 and not the legacy transform references.

Step 4: Photon Setup (Standard/PRO/Source)

In order to have the client-server accessibility you need to download Photon Unity Networking and
create your own Photon Account. Sign up for free: https://www.photonengine.com/en/PUN
Once you have an account go your Public Cloud → Applications and copy your App ID as displayed
here:

Once installed, go to \Photon Unity Networking\Resources\PhotonServerSettings, select
the desired service and paste your APP ID:

Now double click on UFE\Engine\ThirdParty\PhotonAPI.unitypackage to extract the bride
scripts then go to Global -> Network Options → Online Service and select Photon as your Network
service.

You can also set a variety of connection options with the Photon Server Settings such as protocol
used, hosting type and search by separated search regions. For more information visit this link.

And that is it! If you haven't missed any of the steps your game should be ready to be tested online.
Remember to backup your project before replacing files and pay close attention to any

https://ufe3d.com/doku.php/character:movesets
https://assetstore.unity.com/packages/tools/network/photon-unity-networking-free-1786
https://www.photonengine.com/en/PUN
https://ufe3d.com/doku.php/global:network
https://doc.photonengine.com/en-us/pun/current/getting-started/initial-setup

2025/07/16 21:25 5/10 UFE 2.0 Netcode

Universal Fighting Engine - https://ufe3d.com/

customization you have done to the code. For more on how to make your own variables deterministic
check out the Custom Code section below.

Map Recorder

One of the key elements that makes UFE easy to prototype is the guided transform hitbox system,
meaning you only need to tell it where the joints are and UFE will take care of the rest. Unfortunately
this means that we are tracking position information directly from the animation itself, and that value
can only be read in float format (non-deterministic).
To solve this, Map Recorder runs and stores the position maps (and delta displacements) of all
identified hitbox on every frame of animation throughout the character's moveset, saving them in
Fix64 format (deterministic). UFE Engine will then play these maps synchronously to the animation
during gameplay.

Map Recorder is located at UFE\Engine\MapRecorder.unity. Run it whenever you have to add
new moves or change one of the character's animation files.

UFE Upgrader

For those who have made their own variables to the editor tools, another important tool in the
conversion arsenal is the UFE Upgrader (\UFE\Editor\UFEUpgrade.cs) used on Step 1. This
script gathers all legacy variables (floats/vectors) throughout subsequential assets and assign their
values to their new respective related types. Codewise you can see that every old declaration has
now a “relative” below its cast with the prefix “_”. If you need to bring some of your own code to UFE
2.0 and don't wanna lose data, make sure to study this script.

Custom Code

For those who need to have custom code in a synchronous form, UFE 2.0 provides some handy
interfaces for controlled object spawn and variable tracking.

Synchronous Prefab Instantiate

In a deterministic simulation, the code must result the same on both clients at the end of every single
frame, so UFE needs to control whenever a game objects is instantiated or destroyed so it knows if an
object should or shouldn't be there. If you wish to spawn something other than a particle effect or a
projectile, use this static function to create it:

UFE.SpawnGameObject(GameObject gameObject, Vector3 position, Quaternion rotation)
UFE.SpawnGameObject(GameObject gameObject, Vector3 position, Quaternion rotation, long
destroyTimer)

https://ufe3d.com/doku.php/move:particleeffects
https://ufe3d.com/doku.php/move:projectiles

Last update: 2022/11/15 16:09 global:netcode https://ufe3d.com/doku.php/global:netcode?rev=1668546572

https://ufe3d.com/ Printed on 2025/07/16 21:25

Parameters
gameObject - The Game Object you wish to instantiate.
position - The world position the object will appear.
rotation - Its initial rotation.
destroyTimer - How long (in frames) will the object last for. Ignore the parameter if the object is
persistent.

using UnityEngine;
using System.Collections;

public class VaseController: MonoBehaviour {
 public GameObject vasePrefab;
 void Start () {
 UFE.SpawnGameObject(vasePrefab, new Vector3(), Quaternion.identity);
 }

 void DestroyVase () {
 UFE.DestroyGameObject(vasePrefab);
 }
}

Variable Tracking: The RecordVar Attribute

Besides controlling object spawns we also need to keep track of certain custom variables in our code.
Let's say you have a custom script called VaseScript.cs on a game object called Vase. A handy way to
deal with this is using MrFusion.cs, a script that allows you to track and restore any variable of your
choice.
First we need to attach UFE\Scripts\Netcode\NetworkCore\MrFusion.cs to the
GameObject/Prefab needed for custom tracking:

Once that is in place you can spawn this game object using UFE.SpawnGameObject (such as the
code example above) and place the trackers onto the variables of your choice. The rule of thumb for
deciding which variable to track comes down to its use as a constant. Here is an example:

using UnityEngine;

2025/07/16 21:25 7/10 UFE 2.0 Netcode

Universal Fighting Engine - https://ufe3d.com/

using System.Collections;
using UFENetcode;

// Make sure your class inherits UFEInterface as UFE tracks its signature.
public class VaseScript : UFEBehaviour, UFEInterface {
 public float weight;
 [RecordVar] public Vector3 position;
 [RecordVar] public bool isBroken;

 public override void UFEFixedUpdate() {
 if (position.y > .1f) BreakMe();
 }

 void BreakMe () {
 if (!isBroken) {
 UFE.DestroyGameObject(gameObject);
 isBroken = true;
 }
 }
}

Notice we only use the [RecordVar] attribute to track the variables that can change during gameplay.
Weight doesn't need to be tracked because it's assumed that value is persistent. [RecordVar]
variables must be public.
Also, notice we are using UFEFixedUpdate instead of FixedUpdate and UFEBehaviour instead of
MonoBehaviour. This is so we can have those events deterministic.
An example of the auto-tracking system can be found under the projectile script:
UFE\Scripts\ProjectileScripts.cs

Manual tracking vs Auto tracking

One additional feature UFE offers is the native manual tracking. By default, all UFE variables that
needs to be tracked are not tracked using RecordVar, but instead a set of structs designed to copy
and store any changes to the core fields and properties. This method minimizes CPU usage by a large
margin, and its recommended that you use this process for large amounts of data and dependency on
low tier hardware (such as mobiles). For more on how this process is done check out the following
scripts:

UFE\Scripts\Netcode\GameState\FluxStates.cs - Contains structs of all trackable
variables in UFE
UFE\Scripts\Netcode\NetworkCore\FluxStateTracker.cs - Contains the functions
LoadState and SaveState.

If you want to find the tracks through UFE, search for #region trackable definitions under
UFE code to see which variables are being manually tracked.

For a more in-depth explanation check out this post.

http://www.ufe3d.com/forum/viewtopic.php?pid=6716#p6716

Last update: 2022/11/15 16:09 global:netcode https://ufe3d.com/doku.php/global:netcode?rev=1668546572

https://ufe3d.com/ Printed on 2025/07/16 21:25

Network 2.0 Options

For a detailed explanation on each option click here.

https://ufe3d.com/doku.php/global:network

2025/07/16 21:25 9/10 UFE 2.0 Netcode

Universal Fighting Engine - https://ufe3d.com/

Video Tutorials

Video

Video

Video

https://www.youtube-nocookie.com/embed/OSovR17apP0
https://www.youtube-nocookie.com/embed/OSovR17apP0
https://www.youtube-nocookie.com/embed/-dmVAf_cyN8
https://www.youtube-nocookie.com/embed/-dmVAf_cyN8
https://www.youtube-nocookie.com/embed/j3B-lhd8JBw
https://www.youtube-nocookie.com/embed/j3B-lhd8JBw

Last update: 2022/11/15 16:09 global:netcode https://ufe3d.com/doku.php/global:netcode?rev=1668546572

https://ufe3d.com/ Printed on 2025/07/16 21:25

Hints

Networking is a relatively complicated aspect of the engine. Don't be alarmed if you can't get running
at first. Here are a few hints to help out on common issues:

Make sure your moves don't have empty references when using UFE Upgrade.
The Animation Recorder tracks the animations based on what is listed on the character
asset. If you have moves that are linked but not properly listed, the animation recorder might
not find the animation.
Don't forget to toggle 'Use Animation Maps' under the Character Editor after recording your
animations. UFE will not alert you about using legacy transform references, so if you're
experiencing any desync, it is most likely this.
Make sure you have no 'self-destruct' scripts attached to your particle effects. UFE needs to
control the spawn and despawn of every GameObject. If you need to use one, use
UFE\Engine\Scripts\DestroyScript.cs instead.

< Back to Network

From:
https://ufe3d.com/ - Universal Fighting Engine

Permanent link:
https://ufe3d.com/doku.php/global:netcode?rev=1668546572

Last update: 2022/11/15 16:09

https://ufe3d.com/doku.php/character:start
https://ufe3d.com/doku.php/global:network
https://ufe3d.com/
https://ufe3d.com/doku.php/global:netcode?rev=1668546572

	UFE 2.0 Netcode
	How it works
	Converting to 2.0
	Map Recorder
	UFE Upgrader
	Custom Code
	Network 2.0 Options

	Video Tutorials
	Hints

